
.

" 8 .. . - , i~ - . .

A General Utility for Plotting Functions
on the

Color Sun Workstation

Robert L. Brown

October, 1986

Research Institute fcr Advarced Computer Science
NASA Aues Research Center

RIACS Technical Report 86.25

NASA Cooperative Agreement Number NCC 2-387

(N A S A - C R - 1 8 0 4 9 2) A GENERAL U T I L I T Y FOR N90-71362 PLOTTING FUNCTIOIYS ON THE COLOR
WORKSTATION (Research I n s t . f o r Advanced

Computer Science) 14 p Unrl a s

SUN

OOl6l 0280696

I
Research Institute for Advanced Computer Science

A General Utility for Plotting Functions
on the

Color Sun Workstation .

Robert L. Brown

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS TR 86.25
October, 1986

ABSTRACT

Functionview is a general utility for displaying two dimensional line graphs on Sun workstations.
Using t i i s utility, one may write very simple programs that are concerned only with the computa-
tion at hand and may disregard any aspects concerning the generation of the graphical image.
The pogram accepts as input a specification file, which dehes a control panel into which the
user can enter program parameters, a set on initial values for these parameters, the name of a
supplied-user program to run, and the specification far the input to that program This document
contains all the information necessary for a Sun user to create programs and specification files
easily, and to produce interesting and useful plots in very short order.

Work reported herein was supported in part by NASA Cooperative Agreement number NCC 2-387
between the National Aef~nautic~ and Space Administration (NASA) and the Universities Space Research
Association (urn).

A General Utility for Plotting Functions
on the

Color Sun Workstation

Roberr L. Brown

Research Institute for Advanced Computer Science
NASA Ames Research Center

RXACS TR 86-25
October, 1986

1. Introduction
The SUN Mcrosystems color workstaLan is a moderately powerful computer with

the capability to perform moderately complex computations at reasonable speed, gen-
erate graphical representations of data moderately easily, and allow the creation of
sophisticated user interfaces. Its shortcoming is that programs that generate graphical
output must be, for the most part, hand crafted for each application. SUN provides no
general tool that allows a user with no knowledge of graphical programming to create
even simple data graphs, especially using the color capabilities of the model 16OC.
Because each application must be embedded in a proa- with a complicated section of
code for handling the user interface and graphical output, the workstation may remain
under utilized despite its capabilities. For example, in a simple application to display the
motion of a swinging two-dimensional pendulum, the percentage of code that actually
simulated the pendulum was 12%, whereas the code to handle the interactive frontend
and the graphical backend was 88%.

The program described herein embodies that 88% in a single fixed program. The
user is chartered only with writing a program to compute the desired function. The out-
put of that program is simply pairs of numbers. The user also supplies a simple visual
specification of a control panel that, when the utility is run, allows the user to modify the
inputs to his simple computational program arbitrarily.

This utility is different from traditional graphics packages in that is provides a
sophisticated interface to a computational program, and allows the user to specify the for-
mat of the input to that program. Instead of just using static data files as its input (which
it is capable of doing), it invokes a user process, or promoram, provides it input from the
user-specified control panel, and then collects and displays the results, or output, of that

- 2 -

process in a graphics window. On color workstations, colormap animation is provided to
enhance the rendering of the plot.

This program is the first in a family of such programs. Subsequent programs add
structure to the output of the computational programs, and hence add capabilites. We
consider the general technique of coupling configurable user interface control panels and
graphical backends with computational programs developed by users with no special
graphics knowledge a sound one and plan to investigate its extensibility.

Figure 1 (at the end of the paper) show a sample run offinctionview.

2. Usage

2.1. Setting Up
Functionview is the name of this utility. Once invoked, it creates a window on the

workstation screen with four parts: a static control panel, a user-defined control panel, a
messages window, and a plotting window. It has two inputs: a specification file and a
computational program, both provided by the user. When it starts up, it reads the
specification file and, based on its contents, builds the user-defined control panel. The
user can then, using the control panels, set the input values for his program, and cause his
program to be invoked. At this point, the utility collects the results and displays them
graphically in a window, allowing for optional dynamic rescaling of the display based on
the input data.

Thus the basic usage scenario is as follows: first, write a program, in C or Fortran,
for example, and by doing so, define which variables in that program should be user
definable inputs. Code the program so that it reads those input values from standard
input using scunf, as follows:

or
scanf ("%f", &myvariable) ;

scanf ("%s", myvariable) ;
where myvariable is the variable to be read in. Since all numeric data values handled by
functionview are inherently floating point, the %f format is always appropriate. How-
ever, variables that are integer in nature may be read using a %d format. This computa-
tion program should be coded so that its output is pairs of numbers, separated by white
space (blanks, tabs, or newlines). Typically, the pairs of numbers will be generated one
pair per line, with a blank between the numbers within a pair. Next, compile and link
this program. Next, write the specification file, as described below. Third, runfunction-
view with the name of the specification file as the first argument. All that is left now is to
modify the input pzarneters, di~p!zy~-d GI? fie cor?trol p a d , and rim the conpmtioza!
program by clicking on the screen Go button (using the leftmost mouse button).

The first input to functionview is the specikation file which is divided into four
parts. It is a simple text file, and the separators between the parts are lines containing
nothing but two percentage signs, as with yucc. The four parts are, in order, a user con-
trol panel template, a set of initial values, a program name, and a program input
specification.

user control panel template

- 3 -

%%
initial values for control panel variables
%%
computational program name
”/%
wmputational program input specification

The following paragraphs describe each of the four sections in turn.
The first section of the specification me contains a’template for the user control

panel, in whichfiutcnbnview allows the user to modify the input values to his computa-
tional program. This section is a combination of literal text fields and variable fields.
Variable fields an denoted by a string of alphanumeric characters preceded by a dollar
sign. All other fields are considered literal. Here is a sample control panel template:

Points: $maxpoinfs Delta T(s): Weltat
Gravity(mk2): $gravitv Pendulum length(m): $length
Initial Position X(m): $hi& Y(m): $inity
Initial Velocity X(mls): $iniM(mls): $initvy

In this example, the italicized fields are the variables and the boldfaced fields are literals.
Functionview copies the literal fields to the user control panel window unmodified, and
replaces the vaiiable fields with the values given in the initialization section. There is no
hard limit on the number of literal and text fields that may appear in a control panel tem-
plate, though using more than nine lines will cause the plotting window in the display to
be clipped off at the bottom of the screen. The resulting control panel will look just like
the template, except that variable names will be replaced by values. Variables infunc-
tionview may be either numerics or strings, as determined by their initial values
described in the next paragraph.

The second section of the specification file contains initial values for the variable
given in the control panel template section. These are of the form of assignment state-
ments, where the left si& is the name of a variable previously used in the control panel,
and the right side is a constant. The only data types supported are strings and floating
point numbers, though values without decimal points will always be displayed as if they
were integers. If the righthand side of the assignment statement is a quoted string, then
the variable on the lefthand side is forever tagged as being a string variable. The value
stored intemally for a string variable and the value displayed on the control panel does
not have the enclosing quotation marks. Embedded quotation marks in the initialization
section must be preceeded by a backslash. The backslash is not needed before embedded
quotation marks on the control panel. Here is a sample initialization section:

-

de Itat=O. 1
maxpoints=2000
gravity=9.8
length=l .O
initxd.5
inity=O.5
i nitvx=O. 7
initvy=0.0

A sample showing a string variable is as follows:

- 4 -

f ile="/etc/hosts"
bins=32

Any uninitialized variables are tagged as being numeric and are left blank in the user
control panel.

The third section of the specification file contains the name of a program to run
when the user offunctionview clicks on the Go button. This program, also provided by
the user, is typically a compiled C or Fortran program, but may just as well be a UNIX
utility such as bc.

The fourth section is formatted much like the first section. It contains a template for
the input to the program named in the previous section. Variable fields in this section,
that is, those beginning with dollar signs, are replaced by the current values of the vari-
ables in the user control panel. The values of string variables are copied in without
enclosing quotation marks.

2.2. Operation
Once the specification file and computational program have been written, functiun-

view can be invoked from a shell, giving the name of the specification file as the first and
only argument.

Functionview will start up, create window on the screen comprising a static control panel
(having the Go button and other items), a one-line messages window, the user control
panel, and a plotting window.

f u n C t i o nvi ew filename

2.2.1. Static Control Panel
The static control panel has several buttons, check boxes, and text fields. There is

also a scrollbar and less frequently used items can only be accessed by scrolling the
panel. The individual buttons can be activated by pointing at them with the mouse and
clicking the leftmost button. While functionview is performing the requested operation,
the button will appear grey meaning no other operation may be initiated. The buttons
and their meaning are
Go When clicked, causes the user's computation program to be invoked and the input

to it created by taking the values from the user control panel, formatting them as
shown in the fourth section of the specification file. Once the computational pro-
gram starts producing output,funcrionview starts reading it, a pair of numbers at a
time, interpreting them as X (horizontal axis, positive left) and Y (vertical axis,
positive up) values, and connecting successive pairs with lines.

When clicked, causesfunctionview to redraw all the points (saved from the last time
the Go button was clicked). This is useful if the plot limits (explained below) or
color map information (also explained below) is changed.

When clicked, causesfuncn'unview to compute the X and Y minimum and max-
imum values in the data and use them as the limits on the plot window. If the
"Square" box is checked (explained below), the difference between the maximum

RP,&EW

Rescale

- 5 -

and minimum values for X and Y is constrained to be the same, resulting in an
aspect ratio of one.

When clicked,functionview exits.

When clicked, Functionview saves the computed X and Y values in a file named
DATA in the local directory. The first line of this file is such that if the file is
invoked as a shell script and the output is piped to a UNM plot@) filter, a hardcopy

Quit

Print

of the ciarawill be produced.
Read

When clicked,fwrctionview reads the file whose name follows the label ‘‘Initial
values from file:” on the same line. Hence, the user must supply a file name before
clicking this button.
The third row of the static control panel contains “toggles”, which may be either

on or off. Those in the on state are indicated by a checkmark in the small box next to
their label. The toggles are
Auto Rescale

If set, causesfwrcrionview to rescale the plotted data automatically every so often if
it has read-and saved data points that are outside the current plot minimum and max-
imum.

If set, the plot area will always be square, covering as much distance on the X axis
as the Y.

On a color workstation, data are drawn in rainbow colors (31 different colors).
These colors are stored in a structure within the workstation called a colormap.
Functionview plots each line in a particular color taken from the colonnap, making
a full pass through the map for each so-many data points, depending on a parameter
described below. If the cycle toggle is set, functionview will rotate the colors
through the colormap in a circular fashion, giving a simple sense of movement.

If set, causes the color map animation to rotate in the opposite direction.
The fourth line of the control panel has the field Points per color cycle. The value

stated on that line is the number of points functionview will plot for each full cycle
through the colormap.

The last two normal lines of the static control panel state the current X and Y
minimum and maximum in the plot area. The user may manually change these (then
click on Redraw) or they can be computed by the rescale function.

In the hidden part of the control panel, accessible only by using the scroll bar, is a
slider that can be used to set the speed of the color map rotation.

sq=

Cycle

Reverse

2.2.2. Messages Panel
The second panel on the window is a one line message area, where functionview

displays status and error messages. The messages are meant to be self-explanatory, but

- 6 -

occasionally a cryptic one appears. A description of diagnostic messages is given below.

2.2.3. User Control Panel
As previously described, the user control panel is formed from the first section of

the specification file. The user may manually change entries in this panel by pointing to
the number to change, clicking the leftmost mouse button, and then using the standard
character and line erase characters to edit the field.

2.3. Diagnostic Messages
Diagnostic messages that may appear in the messages window are as follows:

Terminated by non-numeric input: %s
This is caused by some input received from the user’s program that cannot be
parsed as a number. A typical instance is if an ovexfiow occurs in the user’s pro-
gram and it tries to print the result. In that case, the output appears as the string
‘“a”’.

Empty file name, cannot read.
This occurs when the user clicks the Read button but no file name has been entered
by the input file prompt.

This occurs whenfunctionview tries to access a file and then receives an error return
from the operating system. The name of the offending file and the text of the sys-
tem error is shown.

filename: system error message

3. Examples

3.1. Swinging Pendulum
The following example is one that simulates the motion of a two-dimensional pen-

dulum. Figure 1 at the end of this paper show the results seen on the screen after running
this example. Figure 2 shows the output generated by the Print button. First, the
specification file is given, then the skeleton of the C program to perform the computation
is given.

Points: $maxpoints Delta T(s): $deltat
Gravity (m/s2) : $9 ravity
Initial Position X(m): $initx
initial Velocity X(m/s): $initvx Y(m/s): $initvy

deltak0.1
maiipoi iiis=2000
gravity=9.8
length4 .O
i nitx=0.5
inity=0.5
initvx=0.7
initvy=0.0

Pendulum length(m) : $length
Y(m): $inity

%%

%%

- 7 -

. -
~

pend
%%
$deltat
$maxpoi nts
$gravity
$length
$ ink
$inity
$ i n k
$initvy

The third section contains the name of the compiled program that performs the
simulation of the pendulum. In this example, this program expects eight numeric inputs,
given in the order listed in the fourth section. The skeleton of the computational pro-
gram, pend.c, is shown here. The fact that the names of the input variables in the pro-
gram and the corresponding variables in the specification files are nearly identical is
purely coincident& there is no association between the names in the two files.

#include etdio.h>
main()

- -
int i;
int maxpoints;
float delta-t, gravity, length, mass;
float initx, inity, initw, initvy;
float x, y;

scanf("o/f", &delta-t) ;
scanf("%d",&maxpoints);
scanf("o/of",&gravity) ;
scanf("O/f",&lengt h) ;
scanf("Y0f", &initx) ;
scan f ("Y0f", &i nity) ;
scanf ("Yof",&i nitvx) ;
scanf("%f",&initvy);

for(i = 0 ; i < maxpoints ; i++) {

P COMPUTE NEW POSITIONS x & y,then print */

printf("%g %g\n", x, y);

3.2. Usingbc
This example shows how the UMX utility bc can be used withfunctionview. This

example specification file generates and plots a simple sine curve. Notice that the bc

- 8 -

program is in the specification file itself, rather than being read in from another source.
Because bc is so slow, this program takes a couple of minutes to run.

Number of points: $points
Number of cycles: $cycles
70%
points=lOO
cycles=2
70%
bc -I
70%
for(i=O ; ic$points ; i++) {

r=i/$points*3.141592654*2*$cycles
r
s(r)

1

3.3. Inline Shell Scripts
Arbitrary shell scripts may be encoded infunctionvim specification files. To do so,

the program section of the file should contain simply sh and the input section should con-
tain the body of the shell script. Some care must be taken to assure that any variables
used in the shell script do not confiict with the names of the variables used in the control
panel. Functionvim will copy through unchanged any strings beginning with a dollar
sign that are not variables defined in the control panel.

This example plots a histo,pm of file sizes. It reads the directory named in the
control panel and, using awk, builds a histogram based on the size of the files. The out-
put of a sample run is shown in Figure 3.

-

HISTOGRAM OF FILE SIZES
Directory: $dir
Histogram Bin Size: $binsize
Maximum File Size: $max
70%
dit-="."
binsize=64
max=4096
70%
sh
70%
Is -I $dir I
awk 'BEGIN {maxbin=O}

$4c=$max {bin = int($4/$binsize)
hist[bin]++
if(bi nsmaxbin)

maxbin = bin

{for(i=O ; ic=maxbin ; i++) {
1

. END
hist[i] += 0;

- 9 -

. _)....-- - ~
~ ~~

~~

print i,hist[i]
print i+l ,hist[i]

print maxbin+l ,O
print int($max/$binsize)+l ,O

1

1'

4. Conclusions
We have shown that a simple plotting utility program can be written in a way that

an application programmer may make use of the powerful, control panel-oriented user
interface programming style of the Sun workstation without being concerned with the
details of screen management necessary for such programs. The approach was to
embody al l those details into a single spearate program which then invokes the user's
program and collects and displays its output. Future workk will involve extending this
paradigm to more sophisticated graphics applications.

I n i t i a l Values Fran:
0 Auto Rescale &Square 153 Cycle 153 Reverse
Points per color cyc le: 1008
X Minimun: -1 .8 XMaxinnrn: 1 . 8

I M V Minimun: -1.8 VMaxinun: 1 , 8 II
I! 7

Points: 2686 Delta T(s): 0 . 1
Gravi ty(rn/s2) : 9 . 8 Pendulun length(m) : 1
I n i t i a l Position X(m): 8 . 5 V(m): 8 . 5
I n i t i a l Velocity X(m/s) : 8.15

Figure 1. Sample functionview display.

- 11 -

I I I
-1 -x- 1 -1 -y- 1

Figure 2. Results generated by the Print button.

- 12-

[GO] [Redraw) [Rescale) ['J [m)
[Read] Ini ti a1 Values Fran :
0 Auto Rescale 0 Square 0 Cycle 0 Reverse
Points per color cycle: 31

X Maximun: 65
Y Maximun: 98

Figure 3. Output of Shell Script Sample.

- 13 -

HISTOGRAM OF F ILE SIZES
Directory: -R /usr /r l b/src/sun
Histogram B i n S i z e : 64
Maximun Fi le Size : 4896

